Реклама

Главная - Бизнес-производство
Переход на сверхзвуковую скорость. Ренессанс сверхзвука

(иногда не одна, в зависимости от формы тела). На фото видны ударные волны, образованные на острие фюзеляжа модели, на передней и задней кромках крыла и на заднем окончании модели.

На фронте ударной волны (называемой иногда также скачком уплотнения), имеющем очень малую толщину (доли мм), почти скачкообразно происходят кардинальные изменения свойств потока - его скорость относительно тела снижается и становится дозвуковой, давление в потоке и температура газа скачком возрастают. Часть кинетической энергии потока превращается во внутреннюю энергию газа. Все эти изменения тем больше, чем выше скорость сверхзвукового потока. При гиперзвуковых скоростях (5 и выше Махов) температура газа достигает нескольких тысяч градусов, что создаёт серьёзные проблемы для аппаратов, движущихся с такими скоростями (например, шаттл «Колумбия» разрушился 1 февраля 2003 года из-за повреждения термозащитной оболочки, возникшего в ходе полёта).

Фронт ударной волны по мере удаления от аппарата постепенно принимает почти правильную коническую форму, перепад давления на нём уменьшается с увеличением расстояния от вершины конуса , и ударная волна превращается в звуковую. Угол между осью и образующей конуса связан с числом Маха соотношением:

Когда эта волна достигает наблюдателя, находящегося, например, на Земле, он слышит громкий звук, похожий на взрыв. Распространенным заблуждением является мнение, будто бы это следствие достижения самолётом скорости звука, или «преодоления звукового барьера». На самом деле, в этот момент мимо наблюдателя проходит ударная волна, которая постоянно сопровождает самолёт, движущийся со сверхзвуковой скоростью. Обычно сразу после «хлопка» наблюдатель может слышать гул двигателей самолёта, не слышный до прохождения ударной волны, поскольку самолёт двигается быстрее звуков, издаваемых им. Очень похожее наблюдение имеет место при дозвуковом полёте - самолёт летящий над наблюдателем на большой высоте (больше 1 км) не слышен, точнее слышим с опозданием: направление на источник звука не совпадает с направлением на видимый самолёт для наблюдателя с земли.

Волновой кризис

Волновой кризис - изменение характера обтекания летательного аппарата воздушным потоком при приближении скорости полёта к скорости звука , сопровождающееся, как правило, ухудшением аэродинамических характеристик аппарата - ростом лобового сопротивления , снижением подъёмной силы , появлением вибраций и пр.

Уже в ходе Второй мировой войны скорость истребителей стала приближаться к скорости звука . При этом пилоты иногда стали наблюдать непонятные в то время и угрожающие явления, происходящие с их машинами при полётах с предельными скоростями. Сохранился эмоциональный отчёт лётчика ВВС США своему командиру генералу Арнольду:

«Сэр, наши самолёты уже сейчас очень строги. Если появятся машины с еще большими скоростями, мы не сможем летать на них. На прошлой неделе я на своем „Мустанге“ спикировал на Me-109 . Мой самолёт затрясся, словно пневматический молоток, и перестал слушаться рулей. Я никак не мог вывести его из пике. Всего в трехстах метрах от земли я с трудом выровнял машину…» .

После войны, когда многие авиаконструкторы и лётчики-испытатели предпринимали настойчивые попытки достичь психологически значимой отметки - скорости звука, эти непонятные явления становились нормой, и многие из таких попыток закончились трагически. Это и вызвало к жизни не лишённое мистики выражение «звуковой барьер» (фр. mur du son , нем. Schallmauer - звуковая стена). Пессимисты утверждали, что этот предел превзойти невозможно, хотя энтузиасты, рискуя жизнью, неоднократно пытались сделать это. Развитие научных представлений о сверхзвуковом движении газа позволило не только объяснить природу «звукового барьера», но и найти средства его преодоления.

При дозвуковом обтекании фюзеляжа, крыла и оперения самолёта на выпуклых участках их обводов возникают зоны местного ускорения потока . Когда скорость полёта летательного аппарата приближается к звуковой, местная скорость движения воздуха в зонах ускорения потока может несколько превысить скорость звука (рис. 1а). Миновав зону ускорения, поток замедляется, с неизбежным образованием ударной волны (таково свойство сверхзвуковых течений: переход от сверхзвуковой скорости к дозвуковой всегда происходит разрывно - с образованием ударной волны). Интенсивность этих ударных волн невелика - перепад давления на их фронтах мал, но они возникают сразу во множестве, в разных точках поверхности аппарата, и в совокупности они резко меняют характер его обтекания, с ухудшением его лётных характеристик: подъёмная сила крыла падает, воздушные рули и элероны теряют эффективность, аппарат становится неуправляемым, и всё это носит крайне нестабильный характер, возникает сильная вибрация . Это явление получило название волнового кризиса . Когда скорость движения аппарата становится сверхзвуковой ( > 1), течение вновь становится стабильным, хотя его характер изменяется принципиально (рис. 1б).



Рис. 1а. Аэрокрыло в близком к звуковому потоке. Рис. 1б. Аэрокрыло в сверхзвуковом потоке.

У крыльев с относительно толстым профилем в условиях волнового кризиса центр давления резко смещается назад и нос самолёта «тяжелеет». Пилоты поршневых истребителей с таким крылом, пытавшиеся развить предельную скорость в пикировании с большой высоты на максимальной мощности, при приближении к «звуковому барьеру» становились жертвами волнового кризиса - попав в него, было невозможно выйти из пикирования не погасив скорость, что в свою очередь очень сложно сделать в пикировании. Наиболее известным случаем затягивания в пикирование из горизонтального полёта в истории отечественной авиации является катастрофа Бахчиванджи при испытании ракетного БИ-1 на максимальную скорость. У лучших истребителей Второй Мировой с прямыми крыльями, таких как P-51 «Мустанг» или Me-109 , волновой кризис на большой высоте начинался со скоростей 700-750 км/ч. В то же время реактивные Мессершмитт Me.262 и Me.163 того же периода имели стреловидное крыло, благодаря чему без проблем развивали скорость свыше 800 км/ч. Следует также отметить, что самолёт с традиционным винтом в горизонтальном полёте не может достичь скорости, близкой к скорости звука, поскольку лопасти воздушного винта попадают в зону волнового кризиса и теряют эффективность значительно раньше самолёта. Сверхзвуковые винты с саблевидными лопастями способны решить эту проблему, но на данный момент такие винты получаются слишком сложными в техническом плане и очень шумными, почему на практике не применяются.

Современные дозвуковые самолёты с крейсерской скоростью полёта, достаточно близкой к звуковой (свыше 800 км/ч), обычно выполняются со стреловидным крылом и оперением с тонкими профилями, что позволяет сместить скорость, при которой начинается волновой кризис, в сторону бо́льших значений. Сверхзвуковые самолёты, которым приходится проходить участок волнового кризиса при наборе сверхзвуковой скорости, имеют конструктивные отличия от дозвуковых, связанные, как с особенностями сверхзвукового течения воздушной среды, так и с необходимостью выдерживать нагрузки, возникающие в условиях сверхзвукового полёта и волнового кризиса, в частности - треугольное в плане крыло с ромбовидным или треугольным профилем .

  • на дозвуковых скоростях полёта следует избегать скоростей, при которых начинается волновой кризис (эти скорости зависят от аэродинамических характеристик самолёта и от высоты полёта);
  • переход с дозвуковой скорости на сверхзвуковую реактивными самолётами должен выполняться насколько возможно быстрее, с использованием форсажа двигателя, чтобы избежать длительного полёта в зоне волнового кризиса.

Термин волновой кризис применяется и к водным судам, движущимся со скоростями, близкими к скорости волн на поверхности воды. Развитие волнового кризиса затрудняет рост скорости. Преодоление судном волнового кризиса означает выход на режим глиссирования (скольжения корпуса по поверхности воды).

Исторические факты

  • Первым пилотом, достигшим сверхзвуковой скорости в управляемом полёте, стал американский лётчик-испытатель Чак Йегер на экспериментальном самолёте Bell X-1 (с прямым крылом и ракетным двигателем XLR-11) достигший в пологом пикировании скорости М=1.06. Это произошло 14 октября 1947 года .
  • В СССР звуковой барьер впервые был преодолён 26 декабря 1948 года Соколовским, а потом и Фёдоровым , в полётах со снижением на опытном истребителе Ла-176 .
  • Первым гражданским самолётом, преодолевшим звуковой барьер, стал пассажирский лайнер Douglas DC-8 . 21 августа 1961 г. он достиг скорости 1.012 М или 1262 км/ч в ходе управляемого пике с высоты 12496 м. Полёт предпринимался с целью собрать данные для проектирования новых передних кромок крыла.
  • 15 октября 1997 года , спустя 50 лет после преодоления звукового барьера на самолёте, англичанин Энди Грин преодолел звуковой барьер на автомобиле Thrust SSC .
  • 14 октября 2012 года Феликс Баумгартнер стал первым человеком, преодолевшим звуковой барьер без помощи какого-либо моторизированного транспортного средства, в свободном падении во время прыжка с высоты 39 километров. В свободном падении он достиг скорости 1342,8 километра в час.

См. также

  • Тепловой барьер (проблемы разработки гиперзвуковых летательных аппаратов)

Примечания

Ссылки

  • Теоретические и инженерные основы аэрокосмической техники .

Wikimedia Foundation . 2010 .

Смотреть что такое "Звуковой барьер" в других словарях:

    Барьер - все рабочие скидки Барьер в категории Дом и дача

    ЗВУКОВОЙ БАРЬЕР, причина трудностей в авиации при увеличении скорости полета свыше скорости звука (СВЕРХЗВУКОВАЯ СКОРОСТЬ). Приближаясь к скорости звука, самолет испытывает неожиданное увеличение сопротивления и потерю аэродинамической ПОДЪЕМНОЙ… … Научно-технический энциклопедический словарь

    Явление, возникающее в полёте самолёта или ракеты в момент перехода от дозвуковой к сверхзвуковой скорости полёта в атмосфере. При приближении скорости самолёта к скорости звука (1200 км/ч) в воздухе перед ним возникает тонкая область, в которой… … Энциклопедия техники

    звуковой барьер - garso barjeras statusas T sritis fizika atitikmenys: angl. sonic barrier; sound barrier vok. Schallbarriere, f; Schallmauer, f rus. звуковой барьер, m pranc. barrière sonique, f; frontière sonique, f; mur de son, m … Fizikos terminų žodynas

    звуковой барьер - garso barjeras statusas T sritis Energetika apibrėžtis Staigus aerodinaminio pasipriešinimo padidėjimas, kai orlaivio greitis tampa garso greičiu (viršijama kritinė Macho skaičiaus vertė). Aiškinamas bangų krize dėl staiga padidėjusio… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

Почему преодоление самолетом звукового барьера сопровождается взрывоподобным хлопком? И что такое «звуковой барьер»?

С «хлопком» происходит недоразумение, вызванное неверным пониманием термина «звуковой барьер». Этот «хлопок» правильно называть «звуковым ударом». Самолет, движущийся со сверхзвуковой скоростью, создает в окружающем воздухе ударные волны, скачки воздушного давления. Упрощенно эти волны можно представить себе в виде сопровождающего полет самолета конуса, с вершиной, как бы привязанной к носовой части фюзеляжа, а образующими, направленными против движения самолета и распространяющимися довольно далеко, например до поверхности земли.

Когда граница этого воображаемого конуса, обозначающая фронт основной звуковой волны, достигает уха человека, то резкий скачок давления воспринимается на слух как хлопок. Звуковой удар, как привязанный, сопровождает весь полет самолета, при условии что самолет движется достаточно быстро, пусть и с постоянной скоростью. Хлопком же кажется проход основной волны звукового удара над фиксированной точкой поверхности земли, где, например, находится слушатель.

Другими словами, если бы сверхзвуковой самолет с постоянной, но сверхзвуковой скоростью принялся летать над слушателем туда-сюда, то хлопок слышался бы каждый раз, спустя некоторое время после пролета самолета над слушателем на достаточно близком расстоянии.

А «звуковым барьером» в аэродинамике называют резкий скачок воздушного сопротивления, возникающий при достижении самолетом некоторой пограничной скорости, близкой к скорости звука. При достижении этой скорости характер обтекания самолета воздушным потоком меняется кардинальным образом, что в свое время сильно затрудняло достижение сверхзвуковых скоростей. Обычный, дозвуковой, самолет не способен устойчиво лететь быстрее звука, как бы его ни разгоняли, - он просто потеряет управление и развалится.

Для преодоления звукового барьера ученым пришлось разработать крыло со специальным аэродинамическим профилем и придумать другие ухищрения. Интересно, что пилот современного сверхзвукового самолета хорошо чувствует «преодоление» своим летательным аппаратом звукового барьера: при переходе на сверхзвуковое обтекание ощущается «аэродинамический удар» и характерные «скачки» в управляемости. Вот только с «хлопками» на земле эти процессы напрямую не связаны.

Перед тем, как самолет преодолеет звуковой барьер, может образоваться необычное облако, происхождение которого до сих пор не ясно. Согласно наиболее популярной гипотезе, рядом с самолетом происходит падение давления и возникает так называемая сингулярность Прандтля-Глауэрта с последующей конденсацией капелек воды из влажного воздуха. Собственно, конденсат вы и видите на фотках внизу...

Нажмите на рисунок, чтобы увеличить его.

Правообладатель иллюстрации SPL

О впечатляющих фотографиях реактивных истребителей в плотном конусе водяного пара часто говорят, что это, мол, самолет преодолевает звуковой барьер. Но это ошибка. Обозреватель рассказывает об истинной причине феномена.

Это эффектное явление неоднократно запечатлевали фотографы и видеооператоры. Военный реактивный самолет проходит над землей на большой скорости, несколько сотен километров в час.

По мере того как истребитель ускоряется, вокруг него начинает формироваться плотный конус конденсата; создается впечатление, что самолет - внутри компактного облака.

Будоражащие фантазию подписи под такими фотографиями зачастую утверждают, что перед нами - визуальное свидетельство звукового удара при выходе самолета на сверхзвуковую скорость.

На самом деле, это не совсем так. Мы наблюдаем так называемый эффект Прандтля-Глоерта - физическое явление, возникающее при приближении самолета к скорости звука. С преодолением звукового барьера оно не связано.

  • Другие статьи сайта BBC Future на русском языке

По мере развития авиастроения аэродинамические формы становились все более обтекаемыми, а скорость летательных аппаратов неуклонно росла – самолеты начали делать с окружающим их воздухом такие вещи, на которые не были способны их более тихоходные и громоздкие предшественники.

Загадочные ударные волны, формирующиеся вокруг низколетящих самолетов по мере приближения к скорости звука, а затем и преодоления звукового барьера, свидетельствуют о том, что воздух на таких скоростях ведет себя весьма странным образом.

Так что же это за таинственные облака конденсата?

Правообладатель иллюстрации Getty Image caption Эффект Прандтля-Глоерта наиболее ярко выражен при полетах в теплой, влажной атмосфере

По словам Рода Ирвина, председателя аэродинамической группы Королевского общества воздухоплавания, условия, при которых возникает конус пара, непосредственно предшествуют преодолению самолетом звукового барьера. Однако фотографируют это явление обычно на скоростях чуть меньше скорости звука.

Приземные слои воздуха плотнее, чем атмосфера на больших высотах. При полетах на малых высотах возникает повышенные трение и лобовое сопротивление.

Кстати, летчикам запрещено преодолевать звуковой барьер над сушей. "Выходить на сверхзвук можно над океаном, но не над твердой поверхностью, - объясняет Ирвин. - Между прочим, это обстоятельство было проблемой для сверхзвукового пассажирского лайнера Concorde - запрет ввели уже после ввода его в эксплуатацию, и экипажу разрешалось развивать сверхзвуковую скорость только над водной поверхностью".

Более того, визуально зарегистрировать звуковой удар при выходе самолета на сверхзвук чрезвычайно трудно. Невооруженным глазом его не увидеть - только при помощи специального оборудования.

Для фотографирования моделей, продуваемых на сверхзвуковых скоростях в аэродинамических трубах, обычно используют специальные зеркала, чтобы засечь разницу в отражении света, вызванную формированием ударной волны.

Правообладатель иллюстрации Getty Image caption При перепаде воздушного давления температура воздуха понижается, и содержащаяся в нем влага превращается в конденсат

Фотографии, полученные так называемым шлирен-методом (или методом Теплера), используют для визуализации ударных волн (или, как их еще называют, скачков уплотнения), образующихся вокруг модели.

В ходе продувок вокруг моделей не создаются конусы конденсата, поскольку используемый в аэродинамических трубах воздух предварительно осушается.

Конусы водяного пара связаны со скачками уплотнения (а их несколько), формирующимися вокруг самолета по мере набора им скорости.

Когда скорость летательного аппарата приближается к скорости звука (около 1234 км/ч на уровне моря), в обтекающем его воздухе возникает перепад местного давления и температуры.

Как следствие, воздух теряет способность удерживать влагу, и формируется конденсат в форме конуса, как на этом видео .

"Видимый конус пара вызван скачком уплотнения, при котором возникает перепад давления и температуры окружающего самолет воздуха", - говорит Ирвин.

На многих из самых удачных фотографий этого явления запечатлены самолеты ВМС США - и это неудивительно, учитывая, что теплый, влажный воздух у поверхности моря, как правило, способствует более яркому проявлению эффекта Прандтля-Глоерта.

Такие трюки часто проделывают истребители-бомбардировщики F/A-18 Hornet – это основной тип самолетов палубного базирования американской морской авиации.

Правообладатель иллюстрации SPL Image caption Скачок уплотнения при выходе самолета на сверхзвук трудно обнаружить невооруженным глазом

На таких же боевых машинах летают члены пилотажной группы ВМС США Blue Angels, мастерски выполняющие маневры, при которых вокруг самолета образуется конденсационное облако.

Из-за зрелищности явления его нередко используют в целях популяризации морской авиации. Летчики намеренно маневрируют над морем, где условия для возникновения эффекта Прандтля-Глоерта наиболее оптимальны, а поблизости наготове дежурят профессиональные флотские фотографы - ведь сделать четкий снимок реактивного самолета, летящего со скоростью 960 км/ч, на обычный смартфон невозможно.

Наиболее эффектно конденсационные облака выглядят на так называемом трансзвуковом-режиме полета, когда воздух частично обтекает самолет на сверхзвуковой скорости, а частично - на дозвуковой.

"Самолет при этом необязательно летит на сверхзвуковой скорости, но воздух обтекает верхнюю поверхность его крыла с большей скоростью, чем нижнюю, что приводит к местному скачку уплотнения", - говорит Ирвин.

По его словам, для возникновения эффекта Прандтля-Глоерта необходимы определенные климатические условия (а именно - теплый и влажный воздух), с которыми истребители палубной авиации сталкиваются чаще других самолетов.

Все, что вам остается сделать, - попросить об услуге профессионального фотографа, и - вуаля! - ваш самолет запечатлели в окружении эффектного облака водяного пара, которое многие из нас ошибочно принимают за признак выхода на сверхзвук.

  • Прочитать можно на сайте

Иногда, когда в небе пролетает реактивный самолет, можно услышать громкий хлопок, по звуку напоминающий взрыв. Этот «врыв» является результатом преодоления самолетом звукового барьера.

Что такое звуковой барьер и почему мы слышим взрыв? И кто первым преодолел звуковой барьер ? Эти вопросы мы рассмотрим ниже.

Что такое звуковой барьер и как он образуется?

Аэродинамический звуковой барьер – ряд явлений, которые сопровождают движение любого летательного аппарата (самолета, ракеты и т.п.), скорость которого равна или превышает скорость звука. Другими словами, аэродинамический «звуковой барьер» - это резкий скачок сопротивления воздуха, который возникает при достижении самолетом скорости звука.

Звуковые волны перемещаются в пространстве с определенной скоростью, которая изменяется в зависимости от высоты, температуры и давления. Например, на уровне моря скорость звука составляет примерно 1220 км/час, на высоте 15 тыс. м – до 1000 км/час и т.д. Когда скорость самолета приближается к скорости звука, на него действуют определенные нагрузки. На обычных скоростях (дозвуковых) нос самолета «гонит» перед собой волну сжатого воздуха, скорость которой соответствует скорости звука. Скорость движения волны больше, чем обычная скорость самолета. В результате этого, воздух свободно обтекает всю поверхность самолета.

Но, если скорость самолета соответствует скорости звука, волна сжатия образуется не на носу, а перед крылом. В результате этого образуется ударная волна, увеличивающая нагрузки на крылья.

Чтобы летательный аппарат смог преодолеть звуковой барьер, кроме определенной скорости он должен иметь особую конструкцию. Именно поэтому авиаконструкторы разработали и применили в самолетостроении специальный аэродинамический профиль крыла и другие хитрости. В момент преодоления звукового барьера пилот современного сверхзвукового летательного аппарата ощущает вибрации, «скачки» и «аэродинамический удар», который на земле мы воспринимаем, как хлопок или взрыв.

Кто первым преодолел звуковой барьер?

Вопрос «первопроходцев» звукового барьера такой же, как и вопрос первых покорителей космоса. На вопрос «Кто первым преодолел сверхзвуковой барьер ?» можно дать разные ответы. Это и первый человек, преодолевший звуковой барьер, и первая женщина, и, как ни странно, первое устройство…

Первым, кто преодолел звуковой барьер, был летчик-испытатель Чарльз Эдвурд Йегер (Чак Игер). 14 октября 1947 года его экспериментальный самолет Bell X-1, оснащенный ракетным двигателем, выйдя в пологое пикирование с высоты 21379 м над Викторвиллем (Калифорния, США), достиг скорости звука. Скорость самолета в этот момент составила 1207 км/ч.

На протяжении своей карьеры военный летчик сделал большой вклад в развитие не только американской военной авиации, но и космонавтики. Чарльз Элвуд Йегер закончил свою карьеру в звании генерала ВВС США, побывав во многих уголках планеты. Опыт военного летчика пригодился даже в Голливуде при постановке эффектных воздушных трюков в художественном фильме «Летчик».

Историю Чака Йегера о преодолении звукового барьера рассказывает фильм «Парни что надо», который в 1984 году удостоился четырех статуэток Оскар.

Другие «покорители» звукового барьера

Кроме Чарльза Йегера, который первым преодолел звуковой барьер, были и другие рекордсмены.

  1. Первый советский летчик-испытатель – Соколовский (26 декабря 1948).
  2. Первая женщина – американка Жаклин Кохран (18 мая 1953 г.). Пролетая над военно-воздушной базой Эдвардс (Калифорния, США), ее самолет F-86 преодолел звуковой барьер на скорости 1223 км/час.
  3. Первый гражданский самолет – американский пассажирский авиалайнер Douglas DC-8 (21 августа 1961 г.). Его полет, проходивший на высоте около 12,5 тыс. м, был экспериментальным и организовывался с целью сбора данных, необходимых для будущего проектирования передних кромок крыльев.
  4. Первый автомобиль, преодолевший звуковой барьер - Thrust SSC (15 октября 1997 г.).
  5. Первый человек, преодолевший звуковой барьер в свободном падении – американец Джо Киттингер (1960 г.), прыгнувший с парашютом с высоты 31,5 км. Однако после него, пролетая 14 октября 2012 г. над американским городом Розуэлл (Нью-Мексико, США), австриец Феликс Баумгартнер поставил мировой рекорд, покинув воздушный шар с парашютом на высоте 39 км. Его скорость при этом составила около 1342,8 км/час, а спуск на землю, большая часть пути которого проходила в свободном падении, занял всего 10 минут.
  6. Мировой рекорд преодоления звукового барьера летательным аппаратом принадлежит гиперзвуковой аэробаллистической ракете Х-15 класса «воздух-земля» (1967 г.), находящейся сейчас на вооружении российской армии. Скорость ракеты на высоте 31,2 км составила 6389 км/час. Хотелось бы отметить, что максимально возможная скорость передвижения человека в истории пилотируемых летательных аппаратов – 39897 км/час, которую в 1969 г. достиг американский космический корабль «Аполлон-10».

Первое изобретение, преодолевшее звуковой барьер

Как ни странно, но первым изобретением, преодолевшим звуковой барьер был… простой хлыст, придуманный древними китайцами 7 тыс. лет назад.

До изобретения в 1927 году моментальной фотографии, никто не мог подумать, что щелчок хлыста – это не просто удар ремешка о рукоятку, а миниатюрный сверхзвуковой щелчок. Во время резкого взмаха формируется петля, скорость которой увеличивается в несколько десятков раз и сопровождается щелчком. Петля преодолевает звуковой барьер на скорости порядка 1200 км/час.



 


Читайте:



Режим и график работы: все принципы правильной организации трудового распорядка

Режим и график работы: все принципы правильной организации трудового распорядка

Отношения между работником и работодателем регулируются правилами внутреннего трудового распорядка (ПВТР) или , если условия труда данного...

Международный журнал прикладных и фундаментальных исследований

Международный журнал прикладных и фундаментальных исследований

Стоящие перед российской экономикой задачи долгосрочного развития требуют радикального повышения эффективности управления на различных уровнях. В...

Проектный цикл включает следующие этапы

Проектный цикл включает следующие этапы

Проекты как системная деятельность обладают рядом структурных выражений. Это и структура участников реализации, и организационная структура, и...

Медицинские осмотры: кто за кого платит?

Медицинские осмотры: кто за кого платит?

Например, такие медосмотры обязаны проходить сотрудники, занятые на подземных работах (ст. 330.3 ТК РФ). Предварительный медосмотр Предварительные...

feed-image RSS