Реклама

Главная - Разное
Предприятия микробиологической промышленности влияние на окружающую среду. Этапы развития микробиологической промышленности

Процессы, протекающие при участии бактерий, дрожжей и плесневых грибов, человек применял сотни лет для получения пищевых продуктов и напитков, обработки текстиля и кожи, но участие в этих процессах микроорганизмов было четко показано только в середине 19 в.

В 20 в. промышленность использовала все разнообразие замечательных биосинтетических способностей микроорганизмов, и теперь ферментация занимает центральное место в биотехнологии. С ее помощью получают разнообразные химикалии высокой степени чистоты и лекарственные препараты , изготавливают пиво , вино , ферментированные пищевые продукты. Во всех случаях процесс ферментации разделяется на шесть основных этапов.

Создание среды.

Прежде всего необходимо выбрать соответствующую культуральную среду. Микроорганизмы для своего роста нуждаются в органических источниках углерода, подходящем источнике азота и различных минеральных веществах. При производстве алкогольных напитков в среде должны присутствовать осоложенный ячмень, выжимки из фруктов или ягод. Например, пиво обычно делают из солодового сусла, а вино – из виноградного сока. Помимо воды и, возможно, некоторых добавок эти экстракты и составляют ростовую среду.

Среды для получения химических веществ и лекарственных препаратов намного сложнее. Чаще всего в качестве источника углерода используют сахара и другие углеводы, но нередко масла и жиры, а иногда углеводороды. Источником азота обычно служат аммиак и соли аммония, а также различные продукты растительного или животного происхождения: соевая мука, соевые бобы, мука из семян хлопчатника, мука из арахиса, побочные продукты производства кукурузного крахмала, отходы скотобоен, рыбная мука, дрожжевой экстракт. Составление и оптимизация ростовой среды являются весьма сложным процессом, а рецепты промышленных сред – ревниво оберегаемым секретом.

Стерилизация.

Среду необходимо стерилизовать, чтобы уничтожить все загрязняющие микроорганизмы. Сам ферментер и вспомогательное оборудование тоже стерилизуют. Существует два способа стерилизации: прямая инжекция перегретого пара и нагревание с помощью теплообменника. Желаемая степень стерильности зависит от характера процесса ферментации. Она должна быть максимальной при получении лекарственных препаратов и химических веществ. Требования же к стерильности при производстве алкогольных напитков менее строгие. О таких процессах ферментации говорят как о «защищенных», поскольку условия, которые создаются в среде, таковы, что в них могут расти только определенные микроорганизмы. Например, при производстве пива ростовую среду просто кипятят, а не стерилизуют; ферментер также используют чистым, но не стерильным.

Получение культуры.

Прежде чем начать процесс ферментации, необходимо получить чистую высокопродуктивную культуру. Чистые культуры микроорганизмов хранят в очень небольших объемах и в условиях, обеспечивающих ее жизнеспособность и продуктивность; обычно это достигается хранением при низкой температуре. Ферментер может вмещать несколько сотен тысяч литров культуральной среды, и процесс начинают, вводя в нее культуру (инокулят), составляющей 1–10% объема, в котором будет идти ферментация. Таким образом, исходную культуру следует поэтапно (с пересеваниями) растить до достижения уровня микробной биомассы, достаточного для протекания микробиологического процесса с требуемой продуктивностью.

Совершенно необходимо все это время поддерживать чистоту культуры, не допуская ее заражения посторонними микроорганизмами. Сохранение асептических условий возможно лишь при тщательном микробиологическом и химико-технологическом контроле.

Рост в промышленном ферментере (биореакторе).

Промышленные микроорганизмы должны расти в ферментере при оптимальных для образования требуемого продукта условиях. Эти условия строго контролируют, следя за тем, чтобы они обеспечивали рост микроорганизмов и синтез продукта. Конструкция ферментера должна позволять регулировать условия роста – постоянную температуру, pH (кислотность или щелочность) и концентрацию растворенного в среде кислорода.

Обычный ферментер представляет собой закрытый цилиндрический резервуар, в котором механически перемешиваются среда и микроорганизмы. Через среду прокачивают воздух, иногда насыщенный кислородом. Температура регулируется с помощью воды или пара, пропускаемых по трубкам теплообменника. Такой ферментер с перемешиванием используется в тех случаях, когда ферментативный процесс требует много кислорода. Некоторые продукты, напротив, образуются в бескислородных условиях, и в этих случаях используются ферментеры другой конструкции. Так, пиво варят при очень низких концентрациях растворенного кислорода, и содержимое биореактора не аэрируется и не перемешивается. Некоторые пивовары до сих пор традиционно используют открытые емкости, но в большинстве случаев процесс идет в закрытых неаэрируемых цилиндрических емкостях, сужающихся книзу, что способствует оседанию дрожжей.

В основе получения уксуса лежит окисление спирта до уксусной кислоты бактериями Acetobacter . Процесс ферментации протекает в емкостях, называемых ацетаторами, при интенсивной аэрации. Воздух и среда засасываются вращающейся мешалкой и поступают на стенки ферментера.

Выделение и очистка продуктов.

По завершении ферментации в бульоне присутствуют микроорганизмы, неиспользованные питательные компоненты среды, различные продукты жизнедеятельности микроорганизмов и тот продукт, который желали получить в промышленном масштабе. Поэтому данный продукт очищают от других составляющих бульона. При получении алкогольных напитков (вина и пива) достаточно просто отделить дрожжи фильтрованием и довести до кондиции фильтрат. Однако индивидуальные химические вещества, получаемые путем ферментации, экстрагируют из сложного по составу бульона. Хотя промышленные микроорганизмы специально отбираются по своим генетическим свойствам так, чтобы выход желаемого продукта их метаболизма был максимален (в биологическом смысле), концентрация его все же мала по сравнению с той, которая достигается при производстве на основе химического синтеза. Поэтому приходится прибегать к сложным методам выделения – экстрагированию растворителем, хроматографии и ультрафильтрации.

Переработка и ликвидация отходов ферментации.

При любых промышленных микробиологических процессах образуются отходы: бульон (жидкость, оставшаяся после экстракции продукта производства); клетки использованных микроорганизмов; грязная вода, которой промывали установку; вода, применявшаяся для охлаждения; вода, содержащая в следовых количествах органические растворители, кислоты и щелочи. Жидкие отходы содержат много органических соединений; если их сбрасывать в реки, они будут стимулировать интенсивный рост естественной микробной флоры, что приведет к обеднению речных вод кислородом и созданию анаэробных условий. Поэтому отходы перед удалением подвергают биологической обработке, чтобы уменьшить содержание органического углерода.

ПРОМЫШЛЕННЫЕ МИКРОБИОЛОГИЧЕСКИЕ ПРОЦЕССЫ

Промышленные микробиологические процессы можно разбить на 5 основных групп: 1) выращивание микробной биомассы; 2) получение продуктов метаболизма микроорганизмов; 3) получение ферментов микробного происхождения; 4) получение рекомбинантных продуктов; 5) биотрансформация веществ.

Микробная биомасса.

Микробные клетки сами по себе могут служить конечным продуктом производственного процесса. В промышленном масштабе получают два основных типа микроорганизмов: дрожжи, необходимые для хлебопечения, и одноклеточные микроорганизмы, используемые как источник белков, которые можно добавлять в пищу человека и животных. Пекарские дрожжи выращивали в больших количествах с начала 20 в. и использовали в качестве пищевого продукта в Германии во время Первой мировой войны.

Однако технология производства микробной биомассы как источника пищевых белков была разработана только в начале 1960-х годов. Ряд европейских компаний обратили внимание на возможность выращивания микробов на таком субстрате, как углеводороды, для получения т.н. белка одноклеточных организмов (БОО). Технологическим триумфом было получение продукта, добавляемого в корм скоту и состоящего из высушенной микробной биомассы, выросшей на метаноле. Процесс шел в непрерывном режиме в ферментере с рабочим объемом 1,5 млн. л. Однако в связи с ростом цен на нефть и продукты ее переработки этот проект стал экономически невыгодным, уступив место производству соевой и рыбной муки. К концу 80-х годов заводы по получению БОО были демонтированы, что положило конец бурному, но короткому периоду развития этой отрасли микробиологической промышленности. Более перспективным оказался другой процесс – получение грибной биомассы и грибного белка микопротеина с использованием в качестве субстрата углеводов.

Продукты метаболизма.

После внесения культуры в питательную среду наблюдается лаг-фаза, когда видимого роста микроорганизмов не происходит; этот период можно рассматривать как время адаптации. Затем скорость роста постепенно увеличивается, достигая постоянной, максимальной для данных условий величины; такой период максимального роста называется экспоненциальной, или логарифмической, фазой. Постепенно рост замедляется, и наступает т.н. стационарная фаза. Далее число жизнеспособных клеток уменьшается, и рост останавливается.

Следуя описанной выше кинетике, можно проследить за образованием метаболитов на разных этапах. В логарифмической фазе образуются продукты, жизненно важные для роста микроорганизмов: аминокислоты, нуклеотиды, белки, нуклеиновые кислоты, углеводы и т.д. Их называют первичными метаболитами.

Многие первичные метаболиты представляют значительную ценность. Так, глутаминовая кислота (точнее, ее натриевая соль) входит в состав многих пищевых продуктов; лизин используется как пищевая добавка; фенилаланин является предшественником заменителя сахара аспартама. Первичные метаболиты синтезируются природными микроорганизмами в количествах, необходимых лишь для удовлетворения их потребностей. Поэтому задача промышленных микробиологов состоит в создании мутантных форм микроорганизмов – сверхпродуцентов соответствующих веществ. В этой области достигнуты значительные успехи: например, удалось получить микроорганизмы, которые синтезируют аминокислоты вплоть до концентрации 100 г/л (для сравнения – организмы дикого типа накапливают аминокислоты в количествах, исчисляемых миллиграммами).

В фазе замедления роста и в стационарной фазе некоторые микроорганизмы синтезируют вещества, не образующиеся в логарифмической фазе и не играющие явной роли в метаболизме. Эти вещества называют вторичными метаболитами. Их синтезируют не все микроорганизмы, а в основном нитчатые бактерии, грибы и спорообразующие бактерии. Таким образом, продуценты первичных и вторичных метаболитов относятся к разным таксономическим группам. Если вопрос о физиологической роли вторичных метаболитов в клетках-продуцентах был предметом серьезных дискуссий, то их промышленное получение представляет несомненный интерес, так как эти метаболиты являются биологически активными веществами: одни из них обладают антимикробной активностью, другие являются специфическими ингибиторами ферментов, третьи – ростовыми факторами, многие обладают фармакологической активностью. Получение такого рода веществ послужило основой для создания целого ряда отраслей микробиологической промышленности. Первым в этом ряду стало производство пенициллина; микробиологический способ получения пенициллина был разработан в 1940-х годах и заложил фундамент современной промышленной биотехнологии.

Фармацевтическая промышленность разработала сверхсложные методы скрининга (массовой проверки) микроорганизмов на способность продуцировать ценные вторичные метаболиты. Вначале целью скрининга было получение новых антибиотиков, но вскоре обнаружилось, что микроорганизмы синтезируют и другие фармакологически активные вещества. В течение 1980-х годов было налажено производство четырех очень важных вторичных метаболитов. Это были: циклоспорин – иммунодепрессант, используемый в качестве средства, предотвращающего отторжение имплантированных органов; имипенем (одна из модификаций карбапенема) – вещество с самым широким спектром антимикробного действия из всех известных антибиотиков; ловастатин – препарат, снижающий уровень холестерина в крови; ивермектин – антигельминтное средство, используемое в медицине для лечения онхоцеркоза, или «речной слепоты», а также в ветеринарии.

Ферменты микробного происхождения.

В промышленных масштабах ферменты получают из растений, животных и микроорганизмов. Использование последних имеет то преимущество, что позволяет производить ферменты в огромных количествах с помощью стандартных методик ферментации. Кроме того, повысить продуктивность микроорганизмов несравненно легче, чем растений или животных, а применение технологии рекомбинантных ДНК позволяет синтезировать животные ферменты в клетках микроорганизмов. Ферменты, полученные таким путем, используются главным образом в пищевой промышленности и смежных областях. Синтез ферментов в клетках контролируется генетически, и поэтому имеющиеся промышленные микроорганизмы-продуценты были получены в результате направленного изменения генетики микроорганизмов дикого типа.

Рекомбинантные продукты.

Технология рекомбинантных ДНК, более известная под названием «генная инженерия», позволяет включать гены высших организмов в геном бактерий. В результате бактерии приобретают способность синтезировать «чужеродные» (рекомбинантные) продукты – соединения, которые прежде могли синтезировать только высшие организмы. На этой основе было создано множество новых биотехнологических процессов для производства человеческих или животных белков, ранее недоступных или применявшихся с большим риском для здоровья. Сам термин «биотехнология» получил распространение в 1970-х годах в связи с разработкой способов производства рекомбинантных продуктов. Однако это понятие гораздо шире и включает любой промышленный метод, основанный на использовании живых организмов и биологических процессов.

Первым рекомбинантным белком, полученным в промышленных масштабах, был человеческий гормон роста. Для лечения гемофилии используют один из белков системы свертывания крови, а именно фактор VIII. До того как были разработаны методы получения этого белка с помощью генной инженерии, его выделяли из крови человека; применение такого препарата было сопряжено с риском заражения вирусом иммунодефицита человека (ВИЧ).

Долгое время сахарный диабет успешно лечили с помощью инсулина животных. Однако ученые полагали, что рекомбинантный продукт будет создавать меньше иммунологических проблем, если его удастся получать в чистом виде, без примесей других пептидов, вырабатываемых поджелудочной железой. Кроме того, ожидалось, что число больных диабетом будет со временем увеличиваться в связи с такими факторами, как изменения в характере питания, улучшение медицинской помощи беременным, страдающим диабетом (и как следствие – повышение частоты генетической предрасположенности к диабету), и, наконец, ожидаемое увеличение продолжительности жизни больных диабетом. Первый рекомбинантный инсулин поступил в продажу в 1982, а к концу 1980-х годов он практически вытеснил инсулин животных.

Многие другие белки синтезируются в организме человека в очень небольших количествах, и единственный способ получать их в масштабах, достаточных для использования в клинике, – технология рекомбинантных ДНК. К таким белкам относятся интерферон и эритропоэтин. Эритропоэтин совместно с миелоидным колониестимулирующим фактором регулирует процесс образования клеток крови у человека. Эритропоэтин используется для лечения анемии, связанной с почечной недостаточностью, и может найти применение как средство, способствующее повышению уровня тромбоцитов, при химиотерапии раковых заболеваний.

МИКРОБИОЛОГИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ

производство какого-либо продукта с помощью микроорганизмов. Осуществляемый микроорганизмами процесс называют ферментацией; емкость, в которой он протекает, называется ферментером (или биореактором).

Процессы, протекающие при участии бактерий, дрожжей и плесневых грибов, человек применял сотни лет для получения пищевых продуктов и напитков, обработки текстиля и кожи, но участие в этих процессах микроорганизмов было четко показано только в середине 19 в.

В 20 в. промышленность использовала все разнообразие замечательных биосинтетических способностей микроорганизмов, и теперь ферментация занимает центральное место в биотехнологии. С ее помощью получают разнообразные химикалии высокой степени чистоты и лекарственные препараты, изготавливают пиво, вино, ферментированные пищевые продукты. Во всех случаях процесс ферментации разделяется на шесть основных этапов.

Создание среды. Прежде всего необходимо выбрать соответствующую культуральную среду. Микроорганизмы для своего роста нуждаются в органических источниках углерода, подходящем источнике азота и различных минеральных веществах. При производстве алкогольных напитков в среде должны присутствовать осоложенный ячмень, выжимки из фруктов или ягод. Например, пиво обычно делают из солодового сусла, а вино - из виноградного сока. Помимо воды и, возможно, некоторых добавок эти экстракты и составляют ростовую среду.

Среды для получения химических веществ и лекарственных препаратов намного сложнее. Чаще всего в качестве источника углерода используют сахара и другие углеводы, но нередко масла и жиры, а иногда углеводороды. Источником азота обычно служат аммиак и соли аммония, а также различные продукты растительного или животного происхождения: соевая мука, соевые бобы, мука из семян хлопчатника, мука из арахиса, побочные продукты производства кукурузного крахмала, отходы скотобоен, рыбная мука, дрожжевой экстракт. Составление и оптимизация ростовой среды являются весьма сложным процессом, а рецепты промышленных сред - ревниво оберегаемым секретом.

Стерилизация. Среду необходимо стерилизовать, чтобы уничтожить все загрязняющие микроорганизмы. Сам ферментер и вспомогательное оборудование тоже стерилизуют. Существует два способа стерилизации: прямая инжекция перегретого пара и нагревание с помощью теплообменника. Желаемая степень стерильности зависит от характера процесса ферментации. Она должна быть максимальной при получении лекарственных препаратов и химических веществ. Требования же к стерильности при производстве алкогольных напитков менее строгие. О таких процессах ферментации говорят как о "защищенных", поскольку условия, которые создаются в среде, таковы, что в них могут расти только определенные микроорганизмы. Например, при производстве пива ростовую среду просто кипятят, а не стерилизуют; ферментер также используют чистым, но не стерильным.

Получение культуры. Прежде чем начать процесс ферментации, необходимо получить чистую высокопродуктивную культуру. Чистые культуры микроорганизмов хранят в очень небольших объемах и в условиях, обеспечивающих ее жизнеспособность и продуктивность; обычно это достигается хранением при низкой температуре. Ферментер может вмещать несколько сотен тысяч литров культуральной среды, и процесс начинают, вводя в нее культуру (инокулят), составляющей 1-10% объема, в котором будет идти ферментация. Таким образом, исходную культуру следует поэтапно (с пересеваниями) растить до достижения уровня микробной биомассы, достаточного для протекания микробиологического процесса с требуемой продуктивностью.

Совершенно необходимо все это время поддерживать чистоту культуры, не допуская ее заражения посторонними микроорганизмами. Сохранение асептических условий возможно лишь при тщательном микробиологическом и химико-технологическом контроле.

Рост в промышленном ферментере (биореакторе). Промышленные микроорганизмы должны расти в ферментере при оптимальных для образования требуемого продукта условиях. Эти условия строго контролируют, следя за тем, чтобы они обеспечивали рост микроорганизмов и синтез продукта. Конструкция ферментера должна позволять регулировать условия роста - постоянную температуру, pH (кислотность или щелочность) и концентрацию растворенного в среде кислорода.

Обычный ферментер представляет собой закрытый цилиндрический резервуар, в котором механически перемешиваются среда и микроорганизмы. Через среду прокачивают воздух, иногда насыщенный кислородом. Температура регулируется с помощью воды или пара, пропускаемых по трубкам теплообменника. Такой ферментер с перемешиванием используется в тех случаях, когда ферментативный процесс требует много кислорода. Некоторые продукты, напротив, образуются в бескислородных условиях, и в этих случаях используются ферментеры другой конструкции. Так, пиво варят при очень низких концентрациях растворенного кислорода, и содержимое биореактора не аэрируется и не перемешивается. Некоторые пивовары до сих пор традиционно используют открытые емкости, но в большинстве случаев процесс идет в закрытых неаэрируемых цилиндрических емкостях, сужающихся книзу, что способствует оседанию дрожжей.

В основе получения уксуса лежит окисление спирта до уксусной кислоты бактериями Acetobacter. Процесс ферментации протекает в емкостях, называемых ацетаторами, при интенсивной аэрации. Воздух и среда засасываются вращающейся мешалкой и поступают на стенки ферментера.

Выделение и очистка продуктов. По завершении ферментации в бульоне присутствуют микроорганизмы, неиспользованные питательные компоненты среды, различные продукты жизнедеятельности микроорганизмов и тот продукт, который желали получить в промышленном масштабе. Поэтому данный продукт очищают от других составляющих бульона. При получении алкогольных напитков (вина и пива) достаточно просто отделить дрожжи фильтрованием и довести до кондиции фильтрат. Однако индивидуальные химические вещества, получаемые путем ферментации, экстрагируют из сложного по составу бульона. Хотя промышленные микроорганизмы специально отбираются по своим генетическим свойствам так, чтобы выход желаемого продукта их метаболизма был максимален (в биологическом смысле), концентрация его все же мала по сравнению с той, которая достигается при производстве на основе химического синтеза. Поэтому приходится прибегать к сложным методам выделения - экстрагированию растворителем, хроматографии и ультрафильтрации.

Переработка и ликвидация отходов ферментации. При любых промышленных микробиологических процессах образуются отходы: бульон (жидкость, оставшаяся после экстракции продукта производства); клетки использованных микроорганизмов; грязная вода, которой промывали установку; вода, применявшаяся для охлаждения; вода, содержащая в следовых количествах органические растворители, кислоты и щелочи. Жидкие отходы содержат много органических соединений; если их сбрасывать в реки, они будут стимулировать интенсивный рост естественной микробной флоры, что приведет к обеднению речных вод кислородом и созданию анаэробных условий. Поэтому отходы перед удалением подвергают биологической обработке, чтобы уменьшить содержание органического углерода.

См. также:

Кольер. Словарь Кольера. 2012

Смотрите еще толкования, синонимы, значения слова и что такое МИКРОБИОЛОГИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ в русском языке в словарях, энциклопедиях и справочниках:

  • МИКРОБИОЛОГИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ
    промышленность, отрасль промышленности, в которой производственные процессы базируются на микробиологическом синтезе ценных продуктов из различных видов непищевого сырья (углеводородов нефти …
  • ПРОМЫШЛЕННОСТЬ
    ТЯЖЕЛАЯ - см ТЯЖЕЛАЯ ПРОМЫШЛЕННОСТЬ …
  • ПРОМЫШЛЕННОСТЬ в Словаре экономических терминов:
    ЛЕГКАЯ - см ЛЕГКАЯ ПРОМЫШЛЕННОСТЬ …
  • ПРОМЫШЛЕННОСТЬ в Словаре экономических терминов:
    ДОБЫВАЮЩАЯ - см ДОБЫВАЮЩАЯ ПРОМЫШЛЕННОСТЬ …
  • ПРОМЫШЛЕННОСТЬ в Словаре экономических терминов:
    - ведущие отрасли материального производства, предприятия, занятые добычей сырья, производством и переработкой материалов и энергии, изготовлением …
  • ПРОМЫШЛЕННОСТЬ
    (индустрия) важнейшая отрасль народного хозяйства, оказывающая решающее воздействие на уровень экономического развития общества. Состоит из двух больших групп отраслей - …
  • ПРОМЫШЛЕННОСТЬ в Большой советской энциклопедии, БСЭ:
    индустрия, важнейшая отрасль народного хозяйства, оказывающая решающее воздействие на уровень развития производительных сил общества; представляет собой совокупность предприятий (заводов, фабрик, …
  • ПРОМЫШЛЕННОСТЬ в Энциклопедическом словаре Брокгауза и Евфрона:
    Промышленность. - Это слово употребляется в более широком и болееузком смысле. В первом смысле под ним разумеют вообще всякуюхозяйственную деятельность …
  • ПРОМЫШЛЕННОСТЬ в Современном энциклопедическом словаре:
  • ПРОМЫШЛЕННОСТЬ в Энциклопедическом словарике:
    (индустрия), важнейшая отрасль материального производства, к которой относится промышленно-производственная деятельность предприятий. Различают: промышленность добывающую и обрабатывающую промышленность тяжелую, легкую, пищевую …
  • ПРОМЫШЛЕННОСТЬ в Энциклопедическом словаре:
    , -и, ж. Отрасль производства, охватывающая переработку сырья, разработку недр, создание средств производства и предметов потребления. Добывающая п. Обрабатывающая п. …
  • ПРОМЫШЛЕННОСТЬ в Большом российском энциклопедическом словаре:
    ПРОМ́ЫШЛЕННОСТЬ (индустрия), важнейшая отрасль нар. х-ва, оказывающая решающее воздействие на уровень экон. развития общества. Состоит из двух больших групп отраслей …
  • ПРОМЫШЛЕННОСТЬ в Энциклопедии Брокгауза и Ефрона:
    ? Это слово употребляется в более широком и более узком смысле. В первом смысле под ним разумеют вообще всякую хозяйственную …
  • ПРОМЫШЛЕННОСТЬ в Полной акцентуированной парадигме по Зализняку:
    промы"шленность, промы"шленности, промы"шленности, промы"шленностей, промы"шленности, промы"шленностям, промы"шленность, промы"шленности, промы"шленностью, промы"шленностями, промы"шленности, …
  • ПРОМЫШЛЕННОСТЬ в Тезаурусе русской деловой лексики:
  • ПРОМЫШЛЕННОСТЬ в Тезаурусе русского языка:
    Syn: индустрия Ant: ремесло, ручное …
  • ПРОМЫШЛЕННОСТЬ в Словаре синонимов Абрамова:
    см. …
  • ПРОМЫШЛЕННОСТЬ в словаре Синонимов русского языка:
    Syn: индустрия Ant: ремесло, ручное …
  • ПРОМЫШЛЕННОСТЬ в Новом толково-словообразовательном словаре русского языка Ефремовой:
    ж. 1) Отрасль производства, охватывающая переработку сырья, разработку недр, создание средств производства и предметов потребления. 2) Отдельный вид такой отрасли …
  • ПРОМЫШЛЕННОСТЬ в Словаре русского языка Лопатина:
    пром`ышленность, …
  • ПРОМЫШЛЕННОСТЬ в Полном орфографическом словаре русского языка:
    промышленность, …
  • ПРОМЫШЛЕННОСТЬ в Орфографическом словаре:
    пром`ышленность, …
  • ПРОМЫШЛЕННОСТЬ в Словаре русского языка Ожегова:
    отрасль производства, охватывающая переработку сырья, разработку недр, создание средств производства и предметов потребления Добывающая п. Обрабатывающая п. Тяжелая п. Легкая …
  • ПРОМЫШЛЕННОСТЬ в Современном толковом словаре, БСЭ:
    (индустрия) , важнейшая отрасль народного хозяйства, оказывающая решающее воздействие на уровень экономического развития общества. Состоит из двух больших групп отраслей …
  • ПРОМЫШЛЕННОСТЬ в Толковом словаре русского языка Ушакова:
    промышленности, мн. нет, ж. 1. собир. Фабрики, заводы, предприятия, занимающиеся переработкой сырья или разработкой недр земли. Добывающая промышленность (горнорудные разработки, …
  • ПРОМЫШЛЕННОСТЬ в Толковом словаре Ефремовой:
    промышленность ж. 1) Отрасль производства, охватывающая переработку сырья, разработку недр, создание средств производства и предметов потребления. 2) Отдельный вид такой …
  • ПРОМЫШЛЕННОСТЬ в Новом словаре русского языка Ефремовой:
  • ПРОМЫШЛЕННОСТЬ в Большом современном толковом словаре русского языка:
    ж. 1. Отрасль производства, охватывающая переработку сырья, разработку недр, создание средств производства и предметов потребления. 2. Отдельный вид такой отрасли …
  • СССР. ПРОМЫШЛЕННОСТЬ в Большой советской энциклопедии, БСЭ:
    Развитие промышленности в 1917-45. При наличии в царской России отдельных хорошо оснащенных и организованных производств технический уровень промышленности в целом …
  • МИКРОБИОЛОГИЧЕСКАЯ ТЕХНИКА в Большой советской энциклопедии, БСЭ:
    техника, совокупность методов и аппаратуры для изучения микроорганизмов в лабораторных условиях. Специфика микроорганизмов, обусловленная их малыми размерами, особенностями морфологии и …
  • МИКРОБИОЛОГИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ: ПРОМЫШЛЕННЫЕ МИКРОБИОЛОГИЧЕСКИЕ ПРОЦЕССЫ в Словаре Кольера:
    К статье МИКРОБИОЛОГИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ Промышленные микробиологические процессы можно разбить на 5 основных групп: 1) выращивание микробной биомассы; 2) получение продуктов …
  • БИОТЕХНОЛОГИЯ в Энциклопедии Биология:
    , использование живых организмов и биологических процессов для получения и переработки различных продуктов. Биотехнологические методы издавна применяются в хлебопечении, сыроварении, …
  • МОГИЛЕВ в Большом энциклопедическом словаре:
    город в Белоруссии, центр Могилевской обл., на р. Днепр. Железнодорожный узел. 366 тыс. жителей (1993). Машиностроение (заводы: автомобильный, "Электродвигатель", сельскохозяйственного …
  • ЭТИЛОВЫЙ СПИРТ в Большой советской энциклопедии, БСЭ:
    спирт, этанол, винный спирт, C2H5OH; бесцветная подвижная жидкость с характерным запахом и жгучим вкусом; tпл - 114,15|С, t kип 78,39|С, …
  • ФЕДЕРАТИВНАЯ РЕСПУБЛИКА ГЕРМАНИИ в Большой советской энциклопедии, БСЭ.
  • УКРАИНСКАЯ СОВЕТСКАЯ СОЦИАЛИСТИЧЕСКАЯ РЕСПУБЛИКА в Большой советской энциклопедии, БСЭ:
    Советская Социалистическая Республика, УССР (Украiнська Радянська Социалicтична Республika), Украина (Украiна). I. Общие сведения УССР образована 25 декабря 1917. С созданием …
  • ТАЛИЦА в Большой советской энциклопедии, БСЭ:
    город, центр Талицкого района Свердловской области РСФСР. Расположен на правом берегу р. Пышма (бассейн Оби), в 6 км от ж.-д. …
  • СССР. СЕЛЬСКОЕ ХОЗЯЙСТВО в Большой советской энциклопедии, БСЭ:
    хозяйство Сельское хозяйство - важнейшая часть народнохозяйственного комплекса страны, одна из основных сфер материального производства, оказывающая большое влияние на повышение …
  • СССР. ЕСТЕСТВЕННЫЕ НАУКИ в Большой советской энциклопедии, БСЭ:
    науки Математика Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. …

В структурном отношении микробиологическая промышленность включает две основных группы производств, отличающиеся друг от друга по используемому сырью:

· производство кормовых белковых веществ (главным образом кормовых дрожжей) из углеводородного сырья;

· производство кормовых дрожжей из сырья растительного происхождения, а также фурфурола и другой продукции, получаемой методом гидролиза древесины и растительных отходов сельского и лесного хозяйства.

Кроме того, к отрасли относятся производство аминокислот и ферментных препаратов, кормовых антибиотиков, бактериальных удобрений и микробиологических средств защиты растений и животных, а также различных растворителей из пищевого сырья, следовательно, в ее состав входят предприятия гидролизной промышленности и в то же время промышленности органического синтеза.

Продукция микробиологической промышленности способствует интенсификации сельского хозяйства, в первую очередь, животноводства, а также совершенствованию технологии в легкой, пищевой и некоторых других отраслях промышленного производства (в производстве моющих средств, для очистки сточных вод и др.).

Важным потребителем продукции является комбикормовая промышленность. Примерно 2/3 всей микробиологической продукции используется в сельском хозяйстве.

Кормовые дрожжи – основной продукт отрасли. Для животноводства они имеют такое же значение, как минеральные удобрения для земледелия.

Предприятия, использующие углеводородное сырье для производства дрожжей, ориентированы на центры нефтепереработки, что обусловлено достаточно высокой материалоемкостью производства. Для получения 1 т белка необходимо иметь 2,5 т углеводородного сырья, в качестве которого служат нефтяные дистилляторы и очищенные жидкие парафины нефти .

Производство дрожжей осуществляется в Беларуси на Новополоцком и Мозырском заводах белково-витаминных концентратов. Крупнейший из них – Новополоцкий завод БВК – начал свою работу в 1978 г., Мозырский – в 1983 г.

Гидролизное производство кормового белка на отходах древесины происходит в Бобруйске и Речице. Речицкий гидролизно-дрожжевой завод действует с 1931 г. Сначала он выпускал дубильный экстракт, а кормовые дрожжи поставляет хозяйствам с 1977 г. Бобруйский гидролизный завод дал первую продукцию – этиловый спирт – в 1936 г. После реконструкции в 1967 г. производит и кормовые дрожжи (более 10 тыс. т. в год).

К микробиологической отрасли относятся также:

· Несвижский биохимический завод, который производит около 25 т кормового антибиотика (биомицина) и до 10 млн. гектарных порций в год ризоторфина – бактериального удобрения для бобовых растений;

· Пинский биохимический завод по производству рибофлавина (витамин В 2);

· Обольский цех Новополоцкого завода БВК, который выпускает кормовую добавку – аминокислоту лизин (до 180 т в год).

В Беларуси работает крупнейшее в СНГ научно-производственное объединение "Белмедбиопром" (Минск) по выпуску биопрепаратов.

Следует сказать об экологической вредности как самого производства белка на основе углеводородного сырья, так и присутствии этого белка в кормах.

В структурном отношении микробиологическая промышленность включает две основных группы производств, отличающиеся друг от друга по используемому сырью:

· производство кормовых белковых веществ (главным образом кормовых дрожжей) из углеводородного сырья;

· производство кормовых дрожжей из сырья растительного происхождения, а также фурфурола и другой продукции, получаемой методом гидролиза древесины и растительных отходов сельского и лесного хозяйства.

Кроме того, к отрасли относятся производство аминокислот и ферментных препаратов, кормовых антибиотиков, бактериальных удобрений и микробиологических средств защиты растений и животных, а также различных растворителей из пищевого сырья, следовательно, в ее состав входят предприятия гидролизной промышленности и в то же время промышленности органического синтеза.

Продукция микробиологической промышленности способствует интенсификации сельского хозяйства, в первую очередь, животноводства, а также совершенствованию технологии в легкой, пищевой и некоторых других отраслях промышленного производства (в производстве моющих средств, для очистки сточных вод и др.).

Важным потребителем продукции является комбикормовая промышленность. Примерно 2/3 всей микробиологической продукции используется в сельском хозяйстве.

Кормовые дрожжи – основной продукт отрасли. Для животноводства они имеют такое же значение, как минеральные удобрения для земледелия.

Предприятия, использующие углеводородное сырье для производства дрожжей, ориентированы на центры нефтепереработки, что обусловлено достаточно высокой материалоемкостью производства. Для получения 1 т белка необходимо иметь 2,5 т углеводородного сырья, в качестве которого служат нефтяные дистилляторы и очищенные жидкие парафины нефти .

Производство дрожжей осуществляется в Беларуси на Новополоцком и Мозырском заводах белково-витаминных концентратов. Крупнейший из них – Новополоцкий завод БВК – начал свою работу в 1978 г., Мозырский – в 1983 г.

Гидролизное производство кормового белка на отходах древесины происходит в Бобруйске и Речице. Речицкий гидролизно-дрожжевой завод действует с 1931 г. Сначала он выпускал дубильный экстракт, а кормовые дрожжи поставляет хозяйствам с 1977 г. Бобруйский гидролизный завод дал первую продукцию – этиловый спирт – в 1936 г. После реконструкции в 1967 г. производит и кормовые дрожжи (более 10 тыс. т. в год).

К микробиологической отрасли относятся также:

· Несвижский биохимический завод, который производит около 25 т кормового антибиотика (биомицина) и до 10 млн. гектарных порций в год ризоторфина – бактериального удобрения для бобовых растений;



· Пинский биохимический завод по производству рибофлавина (витамин В 2);

· Обольский цех Новополоцкого завода БВК, который выпускает кормовую добавку – аминокислоту лизин (до 180 т в год).

В Беларуси работает крупнейшее в СНГ научно-производственное объединение "Белмедбиопром" (Минск) по выпуску биопрепаратов.

Следует сказать об экологической вредности как самого производства белка на основе углеводородного сырья, так и присутствии этого белка в кормах.

Заключение

Химическая промышленность – одна из авангардных отраслей научно-технической революции, так как современная химическая технология дает возможность превращать в ценные промышленные продукты практически неограниченный круг сырья.

Химический комплекс Беларуси специализируется на выпуске минеральных удобрений, синтетических волокон, автомобильных шин, резинотехнических изделий, пластмасс, лаков и красок. На его долю приходится около 15 % объема промышленной продукции.

Развитию экономического комплекса в Беларуси способствовал ряд факторов, важнейшими из которых являются наличие богатых отложений калийных солей, выгодность экономико-географического положения, обеспеченность водным источниками, наличие высококвалифицированных трудовых ресурсов.

Развитие химической промышленности в 60-е годы прошлого столетия происходило в условиях жесткого централизованного планирования, в рамках единого народнохозяйственного комплекса СССР. Производство многих видов продукции было сориентировано на привозное сырье и на вывоз его за пределы республики. Большинство производств характеризуется высокой энергоемкостью, что ведет к большим затратам при ограниченности собственных энергоресурсов и удорожанию продукции.



Созданная в 60-70-е годы с ориентацией на закупку зарубежных технологий и оборудования, производственная база химической индустрии уже к концу 80-х годов устарела морально и физически, износ основных производственных фондов составляет 60-80 %.

Необоснованно высокая территориальная концентрация химической промышленности в республике обусловила острые экологические проблемы в Солигорске, Новополоцке, Могилеве, Бобруйске, Светлогорске и других центрах.

Главной проблемой химического комплекса в настоящее время является его внутриструктурная перестройка, перепрофилирование производств на новые, более прогрессивные и конкурентоспособные виды продукции.

Литература

1. Беларусь: государство для человека. Нац. отчет о человеческом развитии – Мн.: Республика Беларусь, 1997– 104 с.

2. Геаграфiя Беларусi: Энцыклапедычны даведнIк. – Мн.: БелЭн, 1992– 381с.

3. О работе народного хозяйства Республики Беларусь за январь –декабрь 2001 г. – Мн: 2002.

4. Программа развития промышленного комплекса Республики Беларусь на 1998–2015 г.г// БЭЖ. – 1998. – №2.

5. Программа социально–экономического развития Республики Беларусь на 2001 – 2005 г.г. – Мн: 2001.

6. Промышленность Республики Беларусь. Стат. сб. – Мн.: 1995.

7. Рогач П.И., Сосновский В.М. Коммерческая география Республики Беларусь. – М., 1993.

8. Рогач П.И., Сосновский В.М. Размещение производительных сил. Учебн. пособие – Мн.: Экоперспективы, 2000.

9. Сацыяльна–эканамiчная геаграфiя Рэспублiкi Беларусь: Вучэб. дапам. для студэнтаў ВНУ/ Пад рэд. А.В. Саломкi, К.Р. Кiрэенка) – Мн: Унiверсiтэцкае, 1997. – 230 с.

10. Сiдор А. Рэгiянальныя асаблiвасцi структуры прамысловасцi Беларусi. // Геаграфiя: праблемы выкладання. – 1996. – вып.3

11. Геаграфiя Беларусi у пытаннях i адказах: Сiдор С. I. i iншыя. Дапаможнiк для вучняў. – Мн.: Нарасвета 1998. – 111 с.

12. Социально-экономическое развитие Республики Беларусь в 2000 году. Белорусская экономика: анализ, прогноз, регулирование. – 2001 – №2.

13. Хрущев А.Т. География промышленности СССР: Учебник для геогр. спец. вузов. –М.: Высш. шк., 1990. – 223 с.

14. Шимова О.С., Соколовский Н.К. Основы экологии и экономика природопользования: Учебник – Мн.: БГЭУ, 2001. – 368 с.

Основы микробиологической промышленности составляют предприятия по выпуску кормового микробиологического белка. Предприятия данной отрасли оказывают негативное воздействие на природные водные объекты и атмосферный воздух. В выбросах предприятий содержатся взвешенные вещества, диоксид, оксид углерода, метиловый спирт, уксусная кислота, аммиак, ацетон, серная кислота, формальдегид, оксид ванадия, толуол.

В целом микробиологическая промышленность вносит небольшой вклад в загрязнение атмосферного воздуха, на ее долю приходится 0,4% объема используемой свежей воды и 1% объема сброса сточных вод в поверхностные водоемы.

2.11 Машиностроение

Машиностроительный комплекс по производству продукции является крупнейшим промышленным образованием, включающим следующие отрасли: тяжелое, энергетическое и транспортное машиностроение, станкоинструментальную промышленность, автомобильное, тракторное и сельскохозяйственное машиностроение, электротехническую промышленность, приборостроение и нефтяное машиностроение, строительное, дорожное и коммунальное машиностроение.

Основными источниками загрязнения атмосферы являются литейное производство, цехи механической обработки, сварочные и лакокрасочные цехи и участки. По валовому выбросу вредных веществ в атмосферу доля машиностроительного комплекса составляет около 6% выбросов в атмосферу всей промышленности.

Выбросы характеризуются присутствием в них оксида углерода, диоксида серы, различных видов пыли и взвешенных веществ, оксидов азота, а также таких вредных веществ, как ксилол, толуол, ацетон, бензин, бутилацелат, аммиак, этилацетат, серная кислота, марганец, хром, свинец и др. Из наиболее опасных загрязняющих веществ, выбрасываемых в атмосферу, значительная доля комплекса в выбросе шестивалентного хрома – 137,9 т, или 43% выброса всей промышленности ежегодно.

Предприятия машиностроения ежегодно используют около 3,5 млрд. м3 свежей воды. Ежегодный сброс сточных вод в поверхностные водоемы составляет около 2 млрд. м3, в том числе загрязненных сточных вод – 0,95 млрд. м3.

2.12 Транспорт

С транспортно-дорожным комплексом связаны газообразные, жидкие и твердые отходы, которые поступают в атмосферу, поверхностные и подземные водоемы, морские воды и почвы. В атмосферу поступает значительное количество углекислого газа и вредных веществ – свинца, сажи, углеводородов, оксидов углерода, серы и азота.

Ежегодно около 53% выбросов загрязняющих веществ в атмосферу приходится на долю транспортных и других передвижных средств, в том числе автомобильных, воздушных, водных, железнодорожных, тракторов и самоходных машин. Общий объем выбросов загрязняющих веществ автомобильным транспортом составляет примерно 70% от всех видов транспорта, или около 40% общего количества антропогенного загрязнения атмосферы.

Отставание в развитии транспортных систем, их экологической защищенности и конкурентоспособности на внутреннем и мировом рынках во многом обусловлено отсутствием системы экологической сертификации в нашей стране, необходимой законодательной и нормативной базы, низким экологическим качеством выпускаемой продукции, отсутствием необходимых механизмов стимулирования проведения работ по снижению токсичности новых и эксплуатируемых автомобилей, включая проведение единой государственной политики в этой области. Наиболее серьезным препятствием к внедрению международных стандартов остается использование свинецсодержащих присадок к моторным топливам, не позволяющих применять каталитические нейтрализаторы.

Значительный выброс в атмосферный воздух загрязняющих веществ производят двигатели воздушных судов. Наиболее неблагоприятное воздействие они оказывают в районе аэропортов, так как здесь выбрасывается почти половина загрязняющих веществ, приходящихся на долю авиации.

Основное загрязнение атмосферного воздуха на железных дорогах дают тепловозы. На их долю приходится до 90% выбросов на железнодорожном транспорте.

Основным источником загрязнения при эксплуатации флота являются накопления на пассажирских и грузовых судах хозяйственно-бытовых и нефтесодержащих вод. Более половины судов (57%), эксплуатирующихся на внутренних водных путях, принадлежат коммерческим и частным компаниям, которые во избежание дополнительных расходов не осуществляют сбор и передачу загрязнений со своего флота на утилизацию, не проводят работ по оснащению судов необходимым водоохранным оборудованием. На их долю приходится более 50% хозяйственно-бытовых сточных вод, нефтесодержащих вод, сухого мусора и отходов, образующихся в процессе эксплуатации речного транспорта.

Потоки автомобильного транспорта являются основным источником шума в городах любой величины. Они не только создают 80% всех зон акустического дискомфорта городов, но и определяют максимальное превышение уровней шума над нормативными.

В настоящее время уровни шума на городских улицах составляют 65–85 дБ (при норме 70 дБ), в дискомфортных условиях проживания в среднем находится около 30% городского населения страны.

Следовательно, транспортно-дорожный комплекс вносит определяющий вклад в загрязнение атмосферного воздух. Особенно существенна его доля по выбросам оксида углерода и углеводородов.



 


Читайте:



Режим и график работы: все принципы правильной организации трудового распорядка

Режим и график работы: все принципы правильной организации трудового распорядка

Отношения между работником и работодателем регулируются правилами внутреннего трудового распорядка (ПВТР) или , если условия труда данного...

Международный журнал прикладных и фундаментальных исследований

Международный журнал прикладных и фундаментальных исследований

Стоящие перед российской экономикой задачи долгосрочного развития требуют радикального повышения эффективности управления на различных уровнях. В...

Проектный цикл включает следующие этапы

Проектный цикл включает следующие этапы

Проекты как системная деятельность обладают рядом структурных выражений. Это и структура участников реализации, и организационная структура, и...

Медицинские осмотры: кто за кого платит?

Медицинские осмотры: кто за кого платит?

Например, такие медосмотры обязаны проходить сотрудники, занятые на подземных работах (ст. 330.3 ТК РФ). Предварительный медосмотр Предварительные...

feed-image RSS